JOM 23922

Schwingungsspektren, Normalkoordinatenanalysen und Synthesen der t-Butylsilane ^tBuSiX₃, X = H, D, F, Cl, Br, I

Karl Hassler

Institut für Anorganische Chemie der T.U., Stremayrgasse 16, A-8010 Graz (Austria)

Manfred Weidenbruch

Fachbereich Chemie der Universität, Carl von Ossietzky-Straße 9-11, W-2900 Oldenburg (Deutschland) (Eingegangen den 26. Mai 1993)

Abstract

The infrared and Raman vibrational spectra of the t-butylsilanes ${}^{t}BuSiX_{3}$ (X = H, D, F, Cl, Br, I) have been measured and assigned with the aid of normal coordinate analyses. The SiX valence-force constants that were calculated are somewhat smaller than the values for the silanes SiX₄. A number of t-butylsilanes were prepared using new reaction pathways and new precursor molecules, whose properties are described.

Zusammenfassung

Die Ir- und Ramanspektren der t-Butylsilane ^tBuSiX₃ (X = H, D, F, Cl, Br, I) wurden aufgenommen und mit Hilfe von Normalkoordinatenanalysen zugeordnet. Die berechneten SiX-Valenzkraftkonstanten sind etwas kleiner als jene der Derivate SiX₄. Für die Synthesen wurden teilweise neue Wege beschritten, in deren Verlauf eine Reihe bisher nicht beschriebener t-Butylsilane als Zwischenstufen dargestellt und charakterisiert wurden.

Key words: Silane; Infrared spectroscopy; Raman spectrocopy

1. Einleitung

Tert-Butylgruppen eignen sich hervorragend zur Stabilisierung ungewöhnlicher Molekülstrukturen, die sie wegen ihrer Raumerfüllung wirksam gegen weitere Reaktionen wie etwa Dimerisierung oder Polymerisation zu schützen vermögen. Im Gegensatz zu sterisch anspruchsvollen Arylsubstituenten wie Mesityl (2,4,6-Trimethylphenyl) oder Supermesityl (= 2,4,6-tri(tbutyl)phenyl) sind die inneren Schwingungen der t-Butylgruppen noch überschaubar. Im Bereich zwischen 200 cm⁻¹ und 600 cm⁻¹, in dem viele Element-Element Schwingungen liegen (z.B. ν SiSi, ν SiP, ν SiS, ν SiAs, ν PP, ν PAs,...) weist der t-Butylsubstituent lediglich Deformationsschwingungen des CC₃-Skeletts auf. Bei Vorliegen von C_{3v}-Symmetrie, wovon bei den t-Butylsilanen ^tBuSiX₃ wohl ausgegangen werden kann, werden sie als δ_s , δ_{as} und ρCC_3 bezeichnet. Den Schwingungsbildern (Abb. 1) kann entnommen werden, daß $\delta_s CC_3$ eine Auslenkung des zentralen C-Atoms in Richtung der SiC-Bindung bedingt. ρCC_3 entspricht keiner internen Deformation der CC3-Gruppe (es werden nur CCSi-Winkel ausgelenkt), die Bewegung muß durch das restliche Molekül kompensiert werden. Es sind deshalb kinetische Kopplungseffekte mit geeigneten Schwingungen des SiX₃-Molekülteils (z.B. $\nu_s SiX_3$ oder $\delta_s SiX_3$) zu erwarten. Zusätzlich ist mit Intensitätsaustausch der beteiligten Schwingungen zu rechnen, so daß je nach der Natur der Substituenten X die Schwingungsspektren ihre Struktur dramatisch verändern können. So sind δ_s , δ_{as}

Correspondence to: Doz. Dr. K. Hassler.

K. Hassler, M. Weidenbruch / Schwingungsspektren, Normalkoordinatenanalysen und Synthesen der 'BuSiX₃

	δ(²⁹ Si)	³ J(SiH)	${}^{1}J(SiF)$ bzw. ${}^{1}J(SiH)$		δ(²⁹ Si)	³ J(SiH)	¹ J(SiF) bzw. ¹ J(SiH)
^t BuSiH ₃	- 39,8	7,35	187,4	^t Bu ₂ SiH ₂	+ 1,9	6,13	181,4
^t BuSiF ₃	-61,5	7,8	304,4	^t Bu ₂ SiF ₂	-7,8	6,2	325,5
^t BuSiCl ₃	17,6	10,5	-	^t Bu ₂ SiCl ₂	- 10,6	7,7	_
^t BuSiBr ₃	+ 3,3	10,1	-	^t Bu ₂ SiBr ₂	+45,8	8,4	-
^t BuSil ₃	- 76,3	13,2	,	^t Bu ₂ SiI ₂	+ 35,4	9,2	
^t BuSiPh ₂ Cl	+ 13,4	-	-	^t BuSiPh ₂ H	-1.9	_	190.6
_				^t BuSiBr ₂ Cl	+ 9,5	11,8	_
^t BuSiBr ₂ H	+ 7,4	10,4	268,2	^t BuSiI ₂ H	- 33,8	11,1	255,6
^t BuSiPhH ₂	- 14,1	_	190,0	^t Bu ₂ SiHCl	+1,1	6,8	211.8

TABELLE 1. ²⁹Si-Kernresonanzdaten (eigene Messungen in C_6D_6 , δ (Si) gegen TMS, J in Hz) von t-Butylsilanen und Di-t-Butylsilanen

und ρCC_3 des t-Butylsilans 'BuSiH₃ im Infrarotspektrum nur als sehr schwache Banden aufzufinden (Tabelle 1). Ersatz der Wasserstoffatome durch Fluor ('BuSiF₃) führt dagegen zu ausgeprägten kinetischen Kopplungsbeeinflussungen durch δ_s , δ_{as} und ρSiF_3 , so daß δ_s , δ_{as} und ρCC_3 als sehr starke bis starke Ir-Absorptionen in Erscheinung treten (Tabelle 3). Eine fundierte Interpretation der Schwingungsspektren ist dann nur mit Hilfe von Normalkoordinatenanalysen (NCA) sinnvoll durchführbar.

Die vorliegende Arbeit setzt sich zum Ziel, die Spektren der t-Butylsilane ^tBuSiX₃ (X = H, D, F, Cl, Br, I) zuzuordnen und ein übertragbares Kraftfeld für den t-Butylsubstituenten zu entwerfen. Die Ergebnisse

Abb. 1. Deformationsschwingungen der CC_3 -Gruppe (die Pfeile geben nur die Richtung, nicht aber die relativen Auslenkungen der Atome an) und ihre Frequenzen für ¹BuSiH₃.

TABELLE 2. Infrarot- und Ramanspektren (<1300 cm⁻¹) von 'BuSiH₃ und 'BuSiD₃ und ihre Zuordnung

^t BuSiH ₃	^t BuSiH ₃				Zuordnung	Rasse	
Ir(g)	Ir(l)	(Ra(l)	Ir(g)	Ir(l)	Ra(l)		
)	1578vs	1570vs	1570w	$\nu_{\rm as} {\rm SiH}_3/{\rm D}_3$	E
2165vs	2148vs	2147vs 🕽	1550s	1545m	1546vs,p	$\nu_s SiH_3/D_3$	A_{1}
1258vw	1260m	1255vw	1260vvw	1255mw	1260vw	$\nu_{as}CC_{1}$	Ē
1220vw		1220ms,p 1190sh	1209w		1215mw	ρCH_3	A_1
1135m	1110w		1138w	1110w			
1084m	1090w		1071w,b				
1015m	1013s	1016vw	1010m	1010m	1015w	ρCH_3	Ε
929vvs	934vs	941ms	942m	940m	941vw,b	ρCH_3	Ε
929vvs	934vs	941ms	690vs		679sh	$\delta_{\rm m} {\rm SiH}_3 / {\rm D}_3$	Ε
900w	918vs		700vs 885w	690vs	694m,p 882vw	$\delta_{s}SiH_{3}/D_{3}$	A_1
837m	827s	829m,p	828ms	828s	829mw,p	$\nu_{s}CC_{3}$	A_1
800vvw	810sh			820sh			
			780vvw				
	721w			645m			
643s	642vs	643w	510s	510s	513mw	$\rho SiH_3/D_3$	Ε
620vw			620vw				
		600vs,p	585w	590m	584s,p	νSiC	A_1
465w,b	~ 440w,b						-
2 C	400vvw						
	357vw	370mw	362w	360w	365m	$\delta_{as}CC_3$	Ε
338vw	340w	340mw,p	338w		337m,p	$\delta_{s}CC_{3}$	A_1
		273vw			260vw	ρCC_3	Ε
		225vw			183m		
		143w			133m		

sollten die Berechnung der Spektren von Molekülen mit mehreren t-Butylgruppen (z.B. ${}^{t}Bu_2SiX_2$ [1] oder ${}^{t}BuX_2SiSiX_2{}^{t}Bu$ [2] ermöglichen.

Im Verlauf unserer Arbeiten stellte sich heraus, daß die Spektren der Silane ^tBuSiX₃ in der Literatur nur sehr unvollständig beschrieben waren. Sämtliche Verbindungen wurden daher teilweise nach neuen Vorschriften und über bisher unbekannte Zwischenstufen synthetisiert und ihre Infrarot- und Ramanspektren registriert. Zusätzlich sind für alle Substanzen die ²⁹Si-Spektren vermessen (siehe experimentellen Teil) und in Tabelle 1 zusammengestellt worden.

2. Experimenteller Teil

2.1. Substanzen

Während die Silane 'BuSiH₃ [3], 'BuSiF₃ [4] und 'BuSiCl₃ [5] nach Literaturvorschriften synthetisiert wurden, ist für 'BuSiI₃ (das bereits von Baudler [6] beschrieben worden ist) ein neuer Syntheseweg ausgearbeitet worden (siehe Schema 1). 'BuSiBr₃ wurde von uns erstmals synthetisiert. Ausgangspunkt war 'BuPh₂SiCl, das nach Schema 1 in eine ganze Reihe von bisher nicht beschriebenen Silanen übergeführt werden kann.

2.2. t-Butylphenylbromchlorsilan

20 g Ph_2^t BuSiCl werden in 50 ml absolutem Benzol gelöst. Nach Zugabe einer kleinen Menge AlBr₃ (etwa 200–500 mg) wird in mäßigem Strom trockener Bromwasserstoff eingeleitet. Dabei achtet man darauf, daß sich die Lösung nicht zu stark erwärmt, da ansonsten beide Phenylgruppen durch Brom substituiert werden. Es gelingt auf diese Weise, Ph^tBuSiBrCl in Ausbeuten von 70–80% zu erhalten. Nach Beendigung der Reaktion wird *i.v.* fraktioniert. Man erhält etwa 15 g (74%) Ph^tBuSiBrCl in Form einer farblosen, öligen Flüssigkeit, $Kp_{0.05} = 65^{\circ}C$.

Schema 1. Aus ^tBuPh₂SiCl dargestellte Silane.

Elementaranal. Gef.: C, 42,98; H, 5,25. $C_{10}H_{14}Si$ -BrCl ber.: C, 43,25; H, 5,08%.

IR (1, < 1000): 998s, 970vw, 942s, 920vw, 849w, 818vs, 739vs, 707s, 695s, 678sh, 623vs, 520sh, 548vs, 525sh, 493vs, 466s, 411s, 387s, 358vw cm⁻¹.

2.3. t-Butyldibromchlorsilan

Man löst 20 g Ph_2Si^4BuCl in 50 ml Benzol, setzt etwa 500 mg AlBr₃ zu und leitet in heftigem Strom HBr ein. Der Kolbeninhalt erwärmt sich dabei bis zum Rückfluß. Man setzt das Einleiten so lange fort, bis sich das Reaktionsgemisch wieder auf Raumtemperatur abgekühlt hat. Das Lösungsmittel wird abdestilliert und der kristalline Rückstand bei 70°C/0,05 mm Hg sublimiert. Man erhält etwa 18 g (ungefähr 90%) ¹BuSiBr₃Cl in Form farbloser Kristalle, die wachsartige Konsistenz aufweisen.

Elementaranal. Gef.: C, 17,43; H, 3,29. $C_4H_9SiBr_2Cl$ ber.: C, 17,13; H, 3,23%.

IR (< 1100, Nujolverreibung): 1007s, 942s, 920sh, 830sh, 816vs, 736m, 700w, 628vs, 585s, 561vs, 496vs, 418vs, 385s, 358vw, 296m cm⁻¹.

^tBuSiBr₂Cl kann wie ^tBuSiCl₃ [4] mit SbF₃ fluoriert werden.

2.4. t-Butylphenylsilan

Ph^tBuSiBrCl kann nach Standardverfahren (LiAlH₄ in Et₂O) zu Ph^tBuSiH₂ hydriert und mittels Vakuumdestillation gereinigt werden ($Kp_{35} = 85-87^{\circ}$ C).

Elementaranal. Gef.: C, 73,24; H, 9,77. $C_{10}H_{16}Si$ ber.: C, 73,09; H, 9,82%.

IR (l, < 1100): 2130vs, 1010s, 995vw, 930vs, 842vs, 823ms, 731s, 698s, 675vvw, 620vw, 589s, 473s, 410m, 382w, 357w, 344w cm⁻¹.

2.5. t-Butyldiphenylsilan

Während ^tBuPh₂SiCl mit LiAlH₄ in Diethylether nur äußerst langsam reagiert, kann durch mehrtägiges Erhitzen auf 80°C in Dioxan nahezu quantitativ ^tBuPh₂SiH erhalten werden. Es wird durch Vakuumdestillation ($Kp_{0,05} = 100-103$ °C) gereinigt.

Elementaranal. Gef.: C, 79,97; H, 8,43. $C_{16}H_{20}Si$ ber.: C, 79,95; H, 8,39%.

IR (l, < 1100): 2115vs, 1066m, 1028mw, 1010s, 998s, 968vw, 938s, 915w, 840m, 806vs, b, 733vs, 698vs, 618w, 599s, 481vs, 459s, 421w, 389mw, 358w cm⁻¹.

2.6. Dibrom-t-butylsilan

Die Darstellung erfolgt mit HBr/AlBr₃ aus 'BuPh₂-SiH, wobei gleich verfahren wird, wie bei der Darstellung von 'BuSiBr₂Cl. Das gebildete 'BuSiBr₂H wird durch Vakuumdestillation ($Kp_{11} = 35^{\circ}$ C) von Verunreinigungen befreit.

Elementaranal. Gef.: C, 19,50; H, 4,07. $C_4H_{10}SiBr_2$ ber.: C, 19,53; H, 4,09%.

IR (1, < 1300): 2185vs, 1255vw, 1215sh, 1200m, 1088m, 1012s, 1003s, 942s, 875w, 835sh, 815vs, 768vs, 676m, 608s, 490m, 470vs, 421s, 395s, 355w, 342m cm⁻¹.

Ra (l, < 1300): 2186s,p, 1220mw,p, 1203m,p, 1013vw, 992w, 942mw, 816mp, 774m, 609s,p, 472m, 420vs,p, 395m,p, 342ms,p, 264sh, 231s,p, 144s,p, 115vs cm⁻¹.

2.7. t-Butyldiiodsilan

^tBuPh₂SiH reagiert mit HI/AlI₃ in C₆H₆ weitgehend quantitativ zu ^tBuI₂SiH, das destillativ ($Kp_4 = 52-54^{\circ}C$) gereinigt wird.

Elementaranal. Gef.: C, 14,20; H, 3,02. $C_4H_{10}SiI_2$ ber.: C, 14,13; H, 2,96%.

IR (l, < 1300): 2165vs, 1259mw, 1210sh, 1196m, 1186m, 1012s, 1001s, 939ms, 812s, 754vs, 730vs, 601ms, 422vs, 395mw, 375vs, 332ms cm⁻¹.

Ra (l, < 1300): 2166s,p, 1211m,p, 1187m,p, 1013w, 1005w, 939mw, 813m, 754vvw, 731mw, 601s,p, 421w, 395m,p, 377vs,p, 331s,p, 236w, 210vs,p, 131vs,p, 99ms, 87vs,p cm⁻¹.

2.8. t-Butyltriiodsilan

5 g (14,8 mmol) ^tBuSiI₂H werden mit 4,1 g (16,1 mmol) I₂ versetzt und auf etwa 150°C erhitzt. Dabei setzt heftige HI-Entwicklung ein. Nach 2–3 h wird der nach dem Erkalten kristalline Rückstand, der noch eine geringen Überschuß Iod enthält, bei 100°C/0,05 Hg sublimiert. Anschließend wird die Kolbenaußenwand ohne Unterbrechung der Wasserkühlung auf 0°C gekühlt, wobei alles Iod vom Sublimationsfinger auf die Kolbenwand sublimiert. Man erhält auf diese Weise etwa 5,5 g (80%) ^tBuSiI₃ in Form farbloser Kristalle. Ihre Eigenschaften stimmen mit den Literaturdaten [6] überein.

2.9. t-Butyltribromsilan

5 g (20,3 mmol) 'BuSiBr₂H werden tropfenweise mit der äquivalenten Menge (3,25 g = 20,3 mmol) Br₂ versetzt, wobei heftige HBr-Entwicklung einsetzt. Der feste, kristalline Reaktionsrückstand wird durch Sublimation (80°C/0,05 mm Hg) gereinigt. Man erhält 5,3 g (= 80%) 'BuSiBr₃ in Form farbloser, wachsartig weicher Kristalle.

Elementaranal.: Gef.: C, 14,73; H, 2,70. C₄H₉SiBr₃ ber.: C, 14,79; H, 2,79%.

Die Schwingungsspektren sind in Tabelle 2 angegeben.

2.10. Schwingungsspektren

Für die Ir-Spektroskopie stand ein Perkin Elmer 883 Spektrometer zur Verfügung. Flüssige Substanzen wurden als Film zwischen CsBr-Scheiben aufgetragen, feste als Nujolverreibung vermessen. Die Ramanspektren wurden mit einem Spex Ramalog (HeNe-Anregung, 50 mW, 9328 Å) in 1 mm Kapillarröhrchen vermessen.

2.11. ²⁹Si-Kernresonanzspektren

Im Verlauf der präparativen Arbeiten machte sich das Fehlen von ²⁹Si-NMR-Daten für die meisten in der Literatur beschriebenen t-Butylsilane schmerzlich bemerkbar. Es wurden deshalb für alle in dieser Arbeit synthetisierten Verbindungen (eingeschlossen die Dit-butylsilane 'Bu₂SiX₂) Kernresonanzverschiebungen und Kopplungskonstanten gemessen. Die Parameter sind in Tabelle 1 zusammengefaßt. Auffallend ist, daß ³J(SiH) dieselbe Größenordnung aufweist, wie sie sonst für ²J(SiH) von Methylsilanen typisch ist (etwa 4–10 Hz [7]). Zudem hängt ³J(SiH) in charakteristischer Weise von der Natur der Substituenten am Si-Atom ab. In der Reihe der Halogenide nimmt sie z.B. vom Fluor zum Iod hin zu. Die Aufnahme der gekoppelten ²⁹Si-Spektren kann deshalb manchmal von Vorteil sein.

Die chemischen Verschiebungen der t-Butylsilane liegen bei niedrigerem Feld als jene der entsprechenden Methylsilane, eine Ausnahme bilden lediglich die Fluorderivate. Dieser Trend ist durch Elektronegativitätseinflüsse allein nicht erklärbar und spiegelt die besonderen sterischen Verhältnisse t-butylsubstituierter Silane wieder.

Für die Aufnahme der Kernresonanzspektren stand ein BRUKER MSL 300 Spektrometer zur Verfügung.

3. Schwingungsspektren

Tabelle 2 faßt die Infrarot- und Ramanspektren der Wasserstoff- und Deuteriumverbindungen 'BuSiH₃ und 'BuSiD₃ zusammen, Tabelle 3 jene der Halogenderivate. Bei ausreichendem Dampfdruck ('BuSiH₃, ^tBuSiD₃ und ^tBuSiF₃) wurden auch Gasphaseninfrarotspektren aufgenommen, um Bandenkonturen als Zuordnungshilfe heranziehen zu können.

In der Diskussion der Schwingungsspektren von t-Butylsilanen kann man die CH-Valenzschwingungen v_{as} und v_s CH₃ sowie die Deformationen δ_{as} und δ_s CH₃ ausklammern, da sie als reine Gruppenschwingungen sehr lagekonstant sind und keine Kopplungen mit anderen Molekülschwingungen eingehen. Dies gilt nicht mehr für die ρCH_3 -Koordinaten, die mit CC-Valenzschwingungen verkoppelt sein können und bei verläßlichen Rechnungen einbezogen werden sollten. CH₃-Torsionsschwingungen können in den meisten Fällen ebenfalls vernachlässigt werden. Bei lokaler C_{3v}-Symmetrie des C₄H₉-Substituenten (dies kann für die hier betrachteten Silane mit gutem Grund angenommen werden), treten acht innere Vibrationen auf, die in den Schwingungsspektren zwischen 1250 cm⁻¹ und 800 cm⁻¹ ($\nu_{s}CC_{3}$, $\nu_{as}CC_{3}$, drei ρCH_{3} -Schwingungen), sowie im Bereich von 450 cm⁻¹ bis 250 cm⁻¹ (δ_s , δ_{as} und ρCC_3) liegen.

Die inneren Freiheitsgrade des kurzwelligen Bereiches (1250-800 cm⁻¹) sind in ihrer Frequenz und Intensität ziemlich konstant und werden auch durch Schwingungen ähnlicher Energie (δ_s , $\delta_{as}SiH_3$, ν_s und $\nu_{as}SiF_3$) kaum in ihrer Lage beeinflußt. ν_sCC_3 (A₁) ist aber gewöhnlich mit ν SiC verkoppelt (siehe Abschnitt NCA), so daß die Berechnung von SiC-Valenzkraftkonstanten die Einbeziehung dieser Schwingungen erforderlich macht. In diese Kopplungsbeziehung ist manchmal auch ν_sSiX_3 (z.B. ν_sSiF_3) eingebunden. Insgesamt gesehen ist dieser Frequenzbereich für alle t-Butylsilane 'BuSiX₃ gleichartig strukturiert, er kann als Fingerprint-Region zur schnellen Identifizierung der t-Butylgruppe herangezogen werden.

Wie bereits in der Einleitung erwähnt, werden die Deformationen δ_s , δ_{as} und ρCC_3 von Koordinaten des SiX₃-Teils (z.B. $\nu_s SiX_3$, δ_s , δ_{as} und ρSiX_3) je nach der energetischen Lage unterschiedlich beeinflußt. Innerhalb der Halogene liegt z.B. $\nu_s SiX_3$ für 'BuSiF₃ und 'BuSiCl₃ über den CC₃-Deformationen, $\nu_s SiBr_3$ und $\nu_s SiI_3$ liegen jedoch darunter. Deswegen kann dieser

^t BuSiF ₃			^t BuSiCl ₃		^t BuSiBr ₃		^t BuSiI ₃		Zuordnung	Rasse
IR(g)	IR(l)	Ra(l)	IR(s)	Ra(s)	IR(s)	Ra(s)	IR(s)	Ra(s)		
	1250sh									
1240w	1244m	1241w	1261s		1260m		1262m		$\nu_{aa}CC_3$	Ε
			1214ms	1215m	1200vs	1202mw	1208m	1210w	ρĈΗ	A_1
1180vvw		1192w	1188w	1180w	1175s	1193w	1182s	1183m	• 5	1
	1125mw						1170sh	1162w		
1070w	1085vw		1080w,b		1060vw					
1015w	1011s	1010vw	1009s	1010w	1007vs	1008w	1002vs	1002w	oCH o	Ε
			972vw						p 0113	-
	939sh	944mw	942vs	940mw	940vs	942mw	937s	938mw	oCH.	E
	<i>,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	841w	1210		865w	2 1 2 1111	2010	350 m	peng	2
816m	814s	814mw	821vs	821ms	813vs	813mw	806vs	806m	# CC .	<i>A</i> .
010111	01.0		765vw	0211110	770mw	oroma	800sh	787sh	rs003	11
	720m		722w		736mw b		72000	7075H		
	655m		655sh		7501114,0		/2014			
	640sh		00000							
610m	610ms	611vs	640s	642ms	620ws	673ms	600ws	600mw	wSiC	4
orom	563w	563w	0403	072113	580m	025113	585ch	000mw	Vale	<i>A</i> 1
	541w	505#	515w		3000		56530			
960vs	951vvs	960sh	586vvs	580w	497005	485w	435vs	433	" SiX	F
884vc	88876	875m	464we h	164w	245m	249978	40048	100m	vas SIX 3	
00413	408***	497	40495,0	40443	245111	240443		17785	vsolA3	A_1
12740	470W	407W	117.	112m	400-	400	297-	296-	\$ CC	4
42/85	420VS	A1 Axmx	3328 400m h	333VS 201w	409VS	409III 28 <i>4</i>	30/5	30011	$o_{s}CC_{3}$	
	41.55H	414VW	400w,0	391W	255	304W	3738	375W	o _{as} cc ₃	L
	555 w ,sii		337VW		333VW	265-1		200W		
240	242-	241	200	200		205sn				
342m	342VS	341VW	288ms	289W		248vvs		230vw	ρCC_3	E
		205ms		200ms		90s		/38	O as SIX 3	E
		233W		181ms		131s		112vs	0,SIX 3	A_1
		183m		129ms		140		73s	ρSIX 3	E
		1358				140m				

TABELLE 3. Infrarot- und Ramanspektren (< 1300 cm⁻¹) der t-Butyl-trihalogensilane ^tBuSiX₁ und ihre Zuordnung

Spektralbereich nur individuell für jede einzelne Verbindung diskutiert werden.

3.1. 'BuSiH₃ und 'BuSiD₃

Die Spektren dieser beiden Derivate können wegen der geringen Masse der H- bzw. D-Atome als einfache Überlagerung der Schwingungen des CC₃-Teils und der SiX₃-Gruppe aufgefaßt werden. Obwohl δ_{s} SiH₃ und $\nu_{s}CC_{3}$ sowie $\nu_{as}CC_{3}$ und ρCH_{3} (siehe Abschnitt NCA) nahe beeinander liegen, tritt keine nennenswerte Wechselwirkung (Kopplungsabstoßung) zwischen diesen Schwingungen ein. δ_{as} SiH₃ wird offensichtlich sogar von ρCH_3 überlagert (Tabelle 2). Die Gruppenschwingungen δ_{as} , δ_{s} und ρ SiH₃ (939, 918 und 639 cm⁻¹) verschieben sich bei Deuterierung nach 645, 685 und 516 cm⁻¹). Ihre Shiftfaktoren von 1,456, 1,34 sowie 1,24 liegen nahe $\sqrt{2}$ und entsprechen der Erwartung. ν SiC wird durch die Deuterierung nicht beeinflußt (594 cm⁻¹ und 591 cm⁻¹), und auch die Frequenzen der CC₃-Deformationen dürfen als typisch für eine von Schwingungskopplungen nicht betroffene t-Butylgruppe aufgefaßt werden.

3.2. 'BuSiF₃

Aufgrund der nicht allzu unterschiedlichen Massen von C und F (die größere Masse des Fluoratoms wird durch die höhere SiF-Valenzkraftkonstante ausgeglichen), treten Kopplungen zwischen $\nu_s SiF_3$, $\nu_s CC_3$ und νSiC auf (siehe Abschnitt NCA), die aber für eine massive Verschiebung der beteiligten Schwingungen aus ihren Erwartungsbereichen nicht ausreichen. Gegenüber ¹BuSiH₃ ist $\nu_s CC_3$ um nur 21 cm⁻¹ (Gasspektren) zu längeren Wellenzahlen verschoben. $\nu_{as}SiF_3$ (E) liegt bei 960 cm⁻¹ (Ra) und ist als Schulter von ρCH_3 (E) (944 cm⁻¹) klar zu erkennen. $\nu_s SiF_3$ ordnen wir nach 875 cm⁻¹ (Ra) zu.

Im Bereich der Gerüstdeformationen ist $z.B. \delta_s SiF_3$ stark mit $\delta_s CC_3$ verkoppelt, so daß letztgenannte Schwingung auf 426 cm⁻¹ (IR, l) angehoben, $\delta_s SiF_3$ aber auf 233 cm⁻¹ abgesenkt wird. In MeSiF₃ liegt $\delta_s SiF_3$ bei 387 cm⁻¹ [8]. $\delta_{as} SiF_3$ ist als Schulter bei 415 cm⁻¹ (IR, l) zu erkennen. In den Raman Spektren konnten wir die beiden Linien nicht mehr auflösen. Während $\nu_s SiF_3$ und $\nu_s CC_3$ kinetisch im Ausmaß von etwa 40:60 verkoppelt sind, weisen $\nu_{as} SiF_3$ und $\nu_{as} CC_3$ Potentialenergieanteile von über 80% auf. Dies wird mit Hilfe der Schwingungsbilder (Abb. 1) verständlich.

3.3. 'BuSiCl₃

Mit schwerer werdendem Halogen wird $\nu_s SiX_3$ zunehmend langwellig verschoben und liegt für 'BuSiCl₃ nur mehr knapp über $\delta_s CC_3$. Die Potentialenergie der symmetrischen SiCl₃-Valenzschwingung

TABELLE 4. Festgehaltene, von Null verschiedene Symmetriekraftkonstanten ^a (Nm⁻¹) der t-Butylgruppe

Rasse	Schwingungsform	F _{ii}	
$\overline{A_1}$	$v_1 = v_8 CC_3$	445	$F_{23} = 20$
-	$\nu_2 = \delta_8 CC_3$	40	
	$\nu_3 = \rho CH_3$	58	
E	$v_1 = v_{as}CC_3$	415	$F_{12} = -10$
	$\nu_2 = \delta_{as} CC_3$	43	$F_{13} = 15$
	$\nu_3 = \rho \overline{C} C_3$	36	
	$\nu_4 = \rho^1 C H_3^{b}$	55	
	$\nu_5 = \rho^2 C H_3^{b}$	57	

^a Deformationskraftkonstanten normiert auf r_{CH} (ρCH_3) und r_{CC} . ^b $\rho^1 CH_3$ hat die Struktur $2\beta_1 - \beta_2 - \beta_2$, $\rho^2 CH_3$ ist vom Typ $\beta_1 - \beta_3$ ($\beta_i = \Delta CCH$ einer Methylgruppe).

beinhaltet daher Anteile von $\delta_s CC_3$ (etwa 35%). $\delta_s SiCl_3$ liegt aber tiefer als $\delta_s CC_3$ und verhindert eine merkliche Kopplungsabstoßung dieser Schwingung, so daß sie (gegenüber 'BuSiH₃) kaum frequenzverschoben auftritt. In der Rasse E ist $\nu_{as}SiCl_3$ (586 cm⁻¹, Ir) mit nahezu 100% Potentialenergie vertreten. δ_{as} und $\rho SiCl_3$ liegen aber tiefer als ρ und $\delta_{as}CC_3$, so daß diese beiden Schwingungen gegenüber 'BuSiH₃ geringfügig zu höheren Wellenzahlen verschoben sind.

3.4. $^{t}BuSiBr_{3}$ und $^{t}BuSiI_{3}$

In der Rasse A_1 dieser beiden Derivate liegen sowohl $\nu_s SiX_3$ als auch $\delta_s SiX_3$ langwelliger als $\delta_s CC_3$, so daß die symmetrische CC₃-Deformation in ihrer Frequenz angehoben wird (409 cm⁻¹ bzw. 387 cm⁻¹). Zusätzlich tritt Intensitätsaustausch ein. In der Rasse E sind, wie bei 'BuSiCl₃, $\delta_{as}SiX_3$ und ρSiX_3 die langwelligsten Deformationen. Die Kopplungen nehmen aber mit schwerer werdendem Halogen ab (siehe

TABELLE 5. Berechnete und beobachtete Grundschwingungen (cm^{-1}) von ^tBuSiH₃ und ^tBuSiD₃

		^t BuSiH	3	^t BuSiD	3
		$\nu_{\rm ber.}$	ν _{beob} .	ν _{ber} .	v beob
$\overline{A_1}$	ρCH ₃	1200	1220	1200	1215
•	$\nu_{\rm s} \rm CC_3$	815	829	824	829
	νŠiC	604	600	570	584
	ν_{s} SiH ₃	2146	2147	1545	1546
	δ _s SiH ₃	894	918	691	694
	$\delta_{s}CC_{3}$	343	340	333	337
Ε	ρCH_3	1009	1016	1009	1015
	ρCH_3	955	941	950	941
	$\nu_{as}CC_3$	1266	1255	1264	1260
	$\nu_{\rm as} {\rm SiH}_{\rm A}$	2159	2147	1581	1570
	δ"SiH	915	941	654	679
	ρSiH	656	643	507	513
	δ _{as} CC ₃	381	370	376	365
	ρCC_3	278	273	267	260

		^t BuSiF ₃		^t BuSiCl ₃		^t BuSiBr ₃	· · · · · · · · · · ·	^t BuSiI ₃	
		$\overline{\nu}_{\text{ber.}}$	ν _{beob.}	$\nu_{\rm ber.}$	$\nu_{\text{beob.}}$	$\nu_{\rm ber.}$	$\nu_{\text{beob.}}$	$\nu_{\rm ber.}$	$\nu_{\text{beob.}}$
$\overline{A_1}$	ρCH ₃	1204	1192	1201	1180	1198	1175	1205	1182
-	$\nu_{s}CC_{3}$	815	814	824	821	821	813	817	806
	νSiC	624	611	649	642	634	620	621	600
	v SiX	870	875	464	464	228	248	178	199
	$\delta_{3}CC_{3}$	417	426	331	333	416	409	397	387
	δ _s SiX ₃	232	233	173	181	130	131	103	112
Ε	ρCH ₃	950	944	949	940	948	940	948	937
	ρCH_3	1010	1010	1009	1010	1009	1007	1009	1002
	$\nu_{as}CC_3$	1266	1240	1262	1261	1259	1260	1259	1262
	$\nu_{as}SiX_3$	967	960	590	580	495	492	434	435
	$\delta_{as}CC_3$	400	414	391	391	386	384	382	373
	$\rho \overline{CC_3}$	308	341	277	289	253	248	241	230
	$\nu_{as} SiX_3$	265	265	177	200	102	96	66	73
	ρSiX ₃	179	183	119	129	77	-	69	73

TABELLE 6. Berechnete und beobachtete Grundschwingungen (cm⁻¹) der t-Butyltrihalogensilane

Abschnitt NCA). δ_{as} und ρCC_3 von ^tBuSiH₃ und ^tBuSiI₃ sind daher nahezu frequenzgleich.

4. Normalkoordinatenanalyse (NCA)

Die Schwingungsberechnungen wurden nach dem FG-Verfahren [9] durchgeführt, wobei zur Aufstellung der G-Matrizen folgende geometrische Parameter verwendet wurden (pm):

d(SiH) = 151, d(SiF) = 156, d(SiCl) = 202, d(SiBr) = 219, d(SiI) = 243, d(SiC) = 188,8, d(CC) = 153,4, d(CH) = 109,0

Alle Winkel wurden als Tetraederwinkel angenommen, um innerhalb der t-Butylsilane bessere Vergleichbarkeit der Kraftkonstanten zu gewährleisten.

Elektronenbeugungsuntersuchungen an 'BuSiMe₂H [10] und 'BuSiMe₂Cl [11] ergaben, daß die SiC(tbutyl)-Bindung bei Einführung elektronegativer Substituenten verkürzt wird (von 188.4 pm auf 187,5 pm). In Tri-t-butylsilan [12] schließlich ist sie auf 193,4 pm verlängert. Im Gegensatz dazu ist die Geometrie der t-Butylgruppe ziemlich konstant und zeigt weder eine Verlängerung der CC-Bindungen noch Kompression der CCC-Winkel. Die für die NCA gewählten Geometrien sollten für einen Vergleich der berechneten Kraftkonstanten mit z.B. jenen der Methylsilane MeSiX₃ geeignet sein.

Die Normalkoordinatenanalyse beinhaltet naturgemäß Symmetriebetrachtungen und die Aufstellung der Symmetriekoordinaten. Man kann wohl in guter Näherung von C_{3v} -Symmetrie in gestaffelter Anordnung des C_3CSiX_3 -Molekülteils ausgehen. Die Molekülschwingungen verteilen sich dann gemäß:

 $\Gamma_{\rm vib} = 10A_1({\rm Ra},{\rm IR}) + 5A_2({\rm v}) + 15E({\rm Ra},{\rm IR})$

auf die irreduziblen Darstellungen der Punktgruppe C_{3v} . Da an CH-Kraftkonstanten im Rahmen dieser Arbeit kein Interesse besteht, wurden die ν_{as} -, ν_{s} -, δ_{as} - und δ_{s} -Koordinaten nach einem von Wilson [9] angegebenen Verfahren aus den G-Matrizen abgespalten. Berücksichtigung fanden jedoch die ρ CH₃-Koordinaten, da sie teilweise intensiv mit CC-Valenz-

TABELLE 7. Symmetriekraftkonstanten ^a (Nm⁻¹) des CSiX₃-Teils der t-Butylsilane

		^t BuSiH	3	^t BuSil	F3	^t BuSiCl	3	^t BuSil	Br ₃	^t BuSil	[₃
		$\overline{F_{ii}}$	F _{ij}	$\overline{F_{ii}}$	F _{ij}	F _{ii}	F _{ij}	F _{ii}	F_{ij}	$\overline{F_{ii}}$	$\overline{F_{ij}}$
$\overline{A_1}$	$v_4 = v_s \text{SiX}_3$	270		680	4,5 = 30	310	4,5 = 10	240	4,5 = 3	180	4,5 = 3
-	$\nu_5 = \delta_5 SiX_3$	21		32	4,6 = 20	20	4,6 = 10	16	4,6 = 8	13	4.6 = 7
	$v_6 = v \operatorname{SiC}^\circ$	280		295	-	285	-	275		265	,
Ε	$v_6 = v_{as} SiX_3$	264		570	6,8 = 20	280	6,8 - 13	220	6,8 = 5	170	6,8 = 5
	$v_7 = \delta_{as} SiX_3$	17,8		23	6,7 = -15	18,5	6,7 = -11	13	6,7 = -6	9	6.7 = -5
	$\nu_8 = \rho \tilde{SiX}_3$	27,5		35	7,8 = 5	16	7,8 = 4	9	7,8 = 3	7	7,8 = 2

^a Deformationskraftkonstanten normiert auf r(SiX).

schwingungen verkoppelt sind. Nicht berücksichtigt in den Kraftkonstantenrechnungen wurden die Torsionsschwingungen, die die restlichen Molekülschwingungen kaum beeinflussen. Mit diesen Vereinfachungen reduziert sich die Dimension des Schwingungsproblems (nur Ir- und raman-aktive Schwingungen) auf:

 $\Gamma_{\rm vib} = 6A_1 + 8E$

Die Symmetriekoordinaten der t-Butylgruppe konnten vom (CH₃)₃Si-Teil des Trimethylchlorsilans [13,14] direkt übernommen werden, auf eine expliziete Wiedergabe in dieser Arbeit wird daher verzichtet. Die aus Strukturuntersuchungen folgende geringe geometrische Variabilität der t-Butylgruppe legt es nahe. ihre inneren Kraftkonstanten in allen Verbindungen als identisch anzusehen und auf eine iterative Anpassung an die gemessenen Frequenzen zu verzichten. Zahlenwerte wurden soweit möglich der Arbeit von Schachtschneider [15] entnommen, oder aus eigenen Rechnungen am Neopentan [16] übertragen. Sie sind in Tabelle 4 zusammengestellt. Für den SiX₃-Teil des Moleküls konnten Kraftkonstanten von den Methylhalogeniden MeSiX₃ [17] bzw. den Disilanen Si₂X₆ [18-20] abgeschätzt werden. Sie wurden in weiterer Folge bis zur befriedigenden Frequenzwiedergabe verfeinert.

Die Tabellen 5 und 6 stellen die berechneten Frequenzen den Meßwerten gegenüber, Tabelle 7 faßt die berechneten Symmetriekraftkonstanten zusammen. Zwischen den Kraftkonstanten des C_3C - und des $CSiX_3$ -Teils in der Rasse A_1 wurden noch folgende, festgehaltene Symmetriekraftkonstanten verwendet (N m⁻¹):

 $F(\nu \text{SiC}/\nu_{s}\text{CC}_{3}) = 30, F(\nu \text{SiC}/\rho_{s}\text{CC}_{3}) = -20$

Tabelle 8 umfaßt die wichtigsten Valenzkraftkonstanten, die sich aus der Auflösung der Symmetriekraftkonstanten nach den inneren Kraftkonstanten ergeben.

Die Schwingungsberechnungen zeigen auch eine ganze Reihe von Schwingungskopplungen auf, die nicht alle angeführt werden können. Erwähnt sei lediglich, daß $\nu_{s}CC_{3}$ (um 800 cm⁻¹) mit ρCH_{3} (um 1200 cm⁻¹) im Ausmaß von etwa 70:20 verkoppelt ist, $\nu_{as}CC_{3}$ (um 1260 cm⁻¹) mit ρCH_{3} (um 930 cm⁻¹) im durchschnittlichen Verhältnis von 55:35. Einzelheiten der Normalkoordinatenanalysen können jederzeit bei den Autoren angefordert werden.

TABELLE 8. Vergleich der SiX-Valenzkraftkonstanten (Nm $^{-1}$) von ^tBuSiX₃ und SiX₄

	Н	F	Cl	Br	I
^t BuSiX ₃	266	607	290	227	173
SiX ₄ [21]	277	633	303	254	194

5. Diskussion

Wie Tabelle 7 zeigt, fällt f(SiC) mit sinkender Elektronegativität der Substituenten. Dies ist bereits aus dem Gang der SiC-Frequenzen (siehe Tabellen 2 und 3) erkennbar. Dabei muß berücksichtigt werden, daß ν SiC von 'BuSiF₃ durch Kopplung mit ν_s SiF₃ bei tieferen Wellenzahlen liegt als es der SiC-Kraftkonstante entspricht, ν SiC von 'BuSiCl₃ dagegen höher (Kopplung mit ν_s SiCl₃). Die Spektren deuten auch auf eine geringfügige Erniedrigung von f(CC) hin. Dies zeigt die Schwingung ν_s CC₃, die beim Übergang Cl \rightarrow Br \rightarrow I von 821 cm⁻¹ auf 813 cm⁻¹ und schließlich 806 cm⁻¹ absinkt. Die Genauigkeit der NCA ist allerdings für eine quantitative Beschreibung dieser Änderungen nicht ausreichend. Wohl aber, um das Absinken von f(SiC) zu erfassen.

Von besonderem Interesse sind die SiX-Valenzkraftkonstanten, die in Tabelle 8 mit den Werten der Tetrahalogenide verglichen werden. Erwartungsgemäß führt der Ersatz eines Halogenatoms durch eine t-Butylgruppe zu einer Verkleinerung der SiX-Valenzkraftkonstante um etwa 5–10%. Daß die Erniedrigung bei 'BuSiBr₃ und 'BuSiI₃ mit etwa 10% deutlicher ist als bei den übrigen Derivaten könnte durchaus auf Abweichungen der Bindungswinkel vom idealen Tetraederwinkel hindeuten.

Dank

Einer der Autoren (K. Hassler) dankt dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Unterstützung mit Sachmittel im Rahmen des Projektes P 7585-CHE. Die Autoren danken auch Frau Dr. K. Schenzel, Institut für Analytische Chemie, Martin Luther Universität Halle, für die Aufnahme von Ramanspektren mit einem Gerät der Fa. Bruker (IFS 66, Nd: YAG-Laser, 200 mW).

Literatur

- 1 K. Hassler und M. Weidenbruch, J. Organomet. Chem., 465 (1994) 137.
- 2 K. Hassler und B. Reiter, J. Organomet. Chem., (JOM 24014) im Druck.
- 3 S. Tannenbaum, S. Kaye und G.F. Lewenz, J. Am. Chem. Soc., 75 (1953) 3753.
- 4 U. Klingebiel und A. Meller, Chem. Ber., 109 (1976) 2430.
- 5 L.J. Tyler, L.H. Sommer und F.C. Whitmore, J. Am. Chem. Soc., 70 (1948) 2876.
- 6 M. Baudler, U. Arndt und D. Grenz, Z. Naturforsch., 43b (1020) 1988.
- 7 H. Marsmann, ²⁹Si-NMR-Spectroscopic Results, in *NMR-Basic Principles and Progress*, Springer, Heidelberg, 1981.
- 8 R.L. Collins und J.R. Nielsen, J. Chem. Phys., 23 (1955) 351.
- 9 E.B. Wilson, J.C. Decius und P.C. Cross, *Molecular Vibrations*, McGraw Hill, NY, 1955.

- 10 G.A. Forsyth, D.W.H. Rankin und H.E. Robertson, J. Mol. Struct., 263 (1991) 311.
- 11 D.G. Anderson, D.W.H. Rankin und H.E. Robertson, J. Mol. Struct., 195 (1989) 253.
- 12 S.K. Doun und L.S. Bartell, J. Mol. Struct., 63 (1980) 249.
- 13 F. Höfler, Z. Naturforsch., 27a (1972) 760.
- 14 K. Shimizu und H. Murata, J. Mol. Spectr., 4 (1960) 201.
- 15 J.H. Schachtschneider und R.G. Snyder, Spectrochim. Acta, 19 (1963) 117.
- 16 K. Hassler, eigene Berechnungen.

- 17 Vgl. z.B. A.J.F. Clark und J.E. Drake, Spectrochim. Acta, 32A (1976) 1419, und darin zitierte Arbeiten.
- 18 J.L. Duncan, Spectrochim. Acta, 20 (1964) 1807.
- 19 F. Höfler, W. Sawodny und E. Hengge, Spectrochim. Acta, 26A (1970) 819.
- 20 F. Höfler, S. Waldhör und E. Hengge, Spectrochim. Acta, 28A (1972) 29.
- 21 H. Siebert, Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie, Springer, Berlin, 1966.